
fax id: 3451 

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
March 26, 1997 - Revised October 20, 1997

Designing a Low-Cost Analog USB Joystick with the 
Cypress Semiconductor CY7C63000 USB Microcontroller

Introduction
The Universal Serial Bus (USB) is an industrial standard se-
rial interface between a computer and peripherals such as a
mouse, joystick, keyboard, etc. This application note de-
scribes how a cost-effective analog USB joystick can be built
quickly using the Cypress Semiconductor single-chip
CY7C63000 USB microcontroller. The document starts with
the basic operations of an analog joystick followed by an in-
troduction to the CY7C63000 USB controller. A schematic of
the analog USB joystick and its connection details can be
found in the Hardware Implementation Section.

The software section of this application note describes the
architecture of the firmware required to implement the joystick
function. Several sample code segments are included to as-
sist in the explanation. The binary code of the complete joy-
stick firmware is available free of charge from Cypress Semi-
conductor. Please contact your local Cypress sales office for
details.

This application note assumes that the reader is familiar with
the CY7C63000 USB controller and the Universal Serial Bus.
The CY7C63000 data sheet is available from the Cypress
web site at www.cypress.com. USB documentation can be
found at the USB Implementers Forum web site at
http://www.usb.org/

Analog Joystick Basics
Basically, an analog joystick has a lever mechanically linked
to a pair of 100 kohm potentiometers. One potentiometer var-
ies resistance with X-axis movement (left, right) while the oth-
er one varies resistance with Y-axis movement (forward,
back). IBM originally defined an interface for two joysticks,
where each joystick had X and Y potentiometers and two “fire”
buttons. Modern joysticks like the Thrustmaster Flight Con-
trol System actually use up all of these interfaces in a single
joystick:

• One set of X and Y potentiometers for direction control

• One rocker switch that consists of four buttons in the four 
directions top, bottom, left and right for a “hat”. This is used 
by games to change the player’s viewing direction.

• Four “fire” buttons.

IBM defined a very simple hardware interface at I/O address
201H for joysticks and other analog devices (e.g. game pads).
Each button has a pullup resistor to 5V. The signal from a
button is HIGH if the button is released and LOW if the button
is pressed. There are no interrupts from the game port. That
means reading the port requires periodically polling address
201H and implementing a button debounce function in soft-
ware. 

Unfortunately, converting the X and Y potentiometer values to
8-bit digital values is not quite that simple. The traditional way
to solve this problem [1] goes something like this:

1. Write anything to I/O address 201H to start a one-shot 
multivibrator. The “multivibrator” has a one-shot for each 
potentiometer. Starting the one-shots has the effect of 
causing all four of the position signals to go HIGH.

2. Read and save a starting count value from a system timer.

3. Each one-shot has a timing capacitor that is discharged to 
ground through a 2.2 kohm resistor in series with a poten-
tiometer.

4. The timing capacitor for each one-shot will eventually dis-
charge far enough to cross the one-shot threshold, which 
will cause the one-shot output to be driven LOW.

5. The software continuously polls the I/O port while any of 
the one-shot outputs are HIGH. Whenever a HIGH to LOW 
change is detected on the one-shot outputs, the system 
timer is read. The software calculates the potentiometer 
value from the difference between the new count and the 
start count.

The one-shot timing capacitors are selected to roughly obey
the relationship:

time delay = 24.2 µs + 0.011 µs * resistance (ohms)

Introduction to CY7C63000
The CY7C63000 is a high performance 8-bit RISC microcon-
troller with an integrated USB Serial Interface Engine (SIE).
The architecture implements 34 commands that are opti-
mized for USB applications. The CY7C63000 has a built-in
clock oscillator and timers as well as programmable current
drivers, and pull-up resistors at each I/O line. High perfor-
mance, low-cost human-interface type computer peripherals
such as a mouse, joystick, or gamepad can be implemented
with minimum external components and firmware effort.

Clock Circuit

The CY7C63000 has a built-in clock oscillator and PLL-based
frequency doubler. This circuit allows a cost effective 6 MHz
ceramic resonator to be used externally while the on-chip
RISC core runs at 12 MHz.

USB Serial Interface Engine (SIE) 

The operation of the SIE is totally transparent to the user. In
the receive mode, USB packet decode and data transfer to
the endpoint FIFO are automatically done by the SIE. The SIE
then generates an interrupt to invoke the service routine after
a packet is unpacked.

In the transmit mode, data transfer from the endpoint and the
assembly of the USB packet are handled automatically by the
SIE.



Designing a Low-Cost USB Joystick

2

General Purpose I/O

The CY7C63000 has 12 general purpose I/O lines divided
into 2 ports: Port 0 and Port 1. One such I/O circuit is shown
in Figure 1. The output state can be programmed according
to Table 1 below. Writing a “0” to the Data Register will drive
the output Low and allow it to sink current.

Instead of supporting a fixed output drive, the CY7C63000
allows the user to select an output current level for each I/O
line. The sink current of each output is controlled by a dedi-
cated 8-bit Isink Register. The lower 4-bits of this register con-
tains a code selecting one of sixteen sink current levels. The
upper 4-bits are reserved and must be written as zeros. The
output sink current levels of the two I/O ports are different. For
Port 0 outputs, the lowest drive strength (0000) is about 0.2
mA and the highest drive strength (1111) is about 1.0 mA.
These levels are insufficient to drive LEDs.

Port 1 outputs are specially designed to drive high-current
applications such as LEDs. Each Port 1 output is much stron-
ger than its Port 0 counterparts at the same drive level setting.
In other words, the lowest and highest drive for Port 1 lines
are about 3.2 mA and 16 mA respectively.

Each General Purpose I/O (GPIO) is capable of generating
an interrupt to the RISC core. Interrupt polarity is selectable
on a per bit basis using the Port Pull-up register. Setting a Port
Pull-up register bit to “1” will select a rising edge trigger for the
corresponding GPIO line. Conversely, setting a Port Pull-up
Register bit to “0” will select a falling edge trigger. The inter-
rupt triggered by a GPIO line is individually enabled by a ded-

icated bit in the Interrupt Enable Register. All GPIO interrupts
are further masked by the Global GPIO Interrupt Enable Bit
in the Global Interrupt Enable Register

The Port Pull-up Registers are located at I/O address 0x08
and 0x09 for Port 0 and Port 1 respectively. The Data Regis-
ters are located at I/O address 0x00 and 0x01 for Port 0 and
Port 1 respectively.

Hardware Implementation
Figure 2 is the schematic for a joystick application.

All I/O pins of Port 0 are programmed to accept active-low
inputs with internal pull-up resistors enabled. This is accom-
plished by setting all bits in the Port 0 Data Register to “1” and
setting the contents of the Port 0 Pull-up Register to all “0”s.

Bits 0 to 3 of Port 0 are used to support up to four “fire” but-
tons. The only external components are the four buttons.

Bits 4 to 7 of Port 0 are used to support a “hat” function. The
hat is limited to nine possible positions. In the left to right
direction, the X value can be maximum left, centered, or max-
imum right. In the forward and back direction, the Y value can
be maximum forward, centered, or maximum back. Again,
there are no external components except the buttons.

Bits 0, 1, and 2 of Port 1 are used to read the X, Y, and
THROTTLE potentiometers respectively. The only external
components needed are a 1800 pF capacitor and a 2Kohm
resistor for each axis.

A 6 MHz ceramic resonator is connected to the clock inputs
of the microcontroller. This component should be placed as
close to the microcontroller as possible.

According to the USB specification, the USB D– line of a
low-speed device (1.5 Mbps) should be tied to a voltage
source between 3.0V and 3.6V with a 1.5K ohms pull-up ter-
minator. The CY7C63000 eliminates the need for a 3.3V reg-
ulator by specifying a 7.5 Kohm resistor connected between
the USB D– line and the nominal 5V VCC (USB Power).

Figure 1. One General Purpose I/O Line

GPIO
Pin

VCC

Isink

DAC
Port Isink
Register

Port Data
Register

Port Pull-Up
Register

16 KΩ
Schmitt
Trigger

Data Bus

Table 1. Programmable Output State 

Port Data bit Port Pull-up bit Output State

0 X sink current “0”

1 0 pull-up resistor “1”

1 1 High-Z



Designing a Low-Cost USB Joystick

3

Figure 2. Hardware Implementation



Designing a Low-Cost USB Joystick

4

Firmware Implementation
USB Interface

All USB Human Interface Device (HID) class applications
such as a joystick, follow the same USB start-up procedure.
The procedure is as follows (see Figure 3):

Device Plug-in

When a USB device is first connected to the bus, it is powered
but remains non-functional waiting for a bus reset. The pull-up
resistor on D– notifies the hub that a low-speed (1.5 Mbps)
device has just been connected.

Bus Reset

The host recognizes the presence of a new USB device and
resets it (see Figure 4).

Enumeration

The host sends a SETUP packet followed by IN packets to
read the device description from default address 0. When the
description is received, the host assigns a new USB address
to the device. The device begins responding to communica-
tion with the newly assigned address. The host then asks for
the device descriptor, configuration descriptor and HID report
descriptor. The descriptors hold the information about the de-
vice. They will be discussed in detail below. Using the infor-
mation returned from the device, the host now knows the
number of data endpoints supported by the device (in a USB
joystick, there is only one data endpoint). At this point, the
process of enumeration is completed. See Figures 5, 6 and 7.

Figure 3. USB Start-Up Procedure

Figure 4. Reset Interrupt Service Routine

Device Plug-in

Bus Reset

Enumeration

Data Acquisition/
Transfer

Reset

• Set up stack pointer

• Enable all interrupts being used

Main loop Figure 5. Endpoint 0 ISR

• Responds to 
SETUP packet 
according to the 
parsing structure

N

Y

End Point 0

received a
SETUP packet

return



Designing a Low-Cost USB Joystick

5

Data Acquisition/Transfer

The firmware polls the joystick buttons and the potentiome-
ters for the X, Y, Z and THROTTLE axes. The status of the
buttons as well as the displacements for each axis are sent to
the host using endpoint 1 (see Figure 8). When the host is-
sues IN packets to retrieve data from the device, the device
returns six bytes of data. These six bytes hold the joystick
control data (see Figure 9).

Figure 6. USB Standard Request Parsing Structure

host to dev 
dev recip 

0x00

host to dev 
inter recip 

0x01

host to dev 
endp recip 

0x02

dev to host 
dev recip 

0x80

dev to host 
inter recip 

0x81

dev to host 
endp recip 

0x82

get status 
0x00

clr feature 
0x01

set feature 
0x3

set addr 
0x05

get desc 
0x06

set desc 
0x07

get config 
0x08

set config 
0x09

get inter 
0x0A

set inter 
0x0B

synch 
0x0C

bmrequest type

brequest

Figure 7. USB HID Class Request Parsing Structure

host to dev 
inter recip 

0x21

dev to host 
inter recip 

0xA1

get_protocol
 0x03

bmrequest type

brequest

get_idle 
0x02

get_reportl 
0x01

set_protocol 
0x0B

set_idle 
0x0A

set_reportl 
0x09



Designing a Low-Cost USB Joystick

6

Figure 9. Data Organization for USB Joystick

The byte order and bit field positions are defined by the HID
report descriptor (discussed below). 

USB Descriptors

As stated earlier, the USB descriptors hold information about
the device. There are several types of descriptors, which will
be discussed in detail below. All descriptors have certain
characteristics in common. Byte 0 is always the descriptor
length in bytes and Byte 1 is always the descriptor type. Dis-
cussion of these two bytes will be omitted from the following

descriptions. The rest of the descriptor structure is dependent
on the descriptor type. An example of each descriptor will be
given. Descriptor types are device, configuration, interface,
endpoint, string, report, and several different class descrip-
tors.

Device Descriptor

This is the first descriptor the host requests from the device.
It contains important information about the device. The size
of this descriptor is 18 bytes. A list follows:

• USB Specification release number in binary-coded deci-
mal (BCD) (2 bytes)

• Device class (1 byte)

• Device subclass (1 byte)

• Device protocol (1 byte)

• Max packet size for Endpoint 0 (1 byte)

• Vendor ID (2 bytes)

• Product ID (2 bytes)

• Device release number in BCD (2 bytes)

• Index of string describing Manufacturer (Optional) (1 byte)

• Index of string describing Product (Optional) (1 byte)

• Index of string containing serial number (Optional) (1 byte)

• Number of configurations for the device (1 byte)

Example of a device descriptor

Descriptor Length (18 bytes)
Descriptor Type (Device)
Complies to USB Spec Release (1.00)
Class Code (insert code)
Subclass Code (0)
Protocol (No specific protocol)
Max Packet Size for endpt 0 (8 bytes)
Vendor ID (Cypress)
Product ID (USB Joystick)
Device Release Number (1.03)
String Describing Vendor (None)
String Describing Product (None)
String for Serial Number (None)
Possible Configurations (1)

Configuration Descriptor

The configuration descriptor is 9 bytes in length and gives the
configuration information for the device. It is possible to have
more than one configuration for each device. When the host
requests a configuration descriptor, it will continue to read
these descriptors until all configurations have been received.
A list of the structure follows:

• Total length of the data returned for this configuration (2 
bytes)

• Number of interfaces for this configuration (1 byte)

• Value used to address this configuration (1 byte)

• Index of string describing this configuration (Optional) (1 
byte)

• Attributes bitmap describing configuration characteristics 
(1 byte)

• Maximum power the device will consume from the bus (1 
byte)

Figure 8. Endpoint 1 Interrupt Service Routine

Bit 7 Bit 0

T 7 T 6 T 5 T 4 T 3 T 2 T1 T 0 Byte 5 -Throttle

Bit 7 Bit 0

Un-
used

Un-
used

Un-
used

Un-
used

But-
ton 3

But-
ton 2

But-
ton 1

But-
ton 0

Byte 4 - buttons

Bit 7 Bit 0

Un-
used

Un-
used

Un-
used

Un-
used

Hat 3 Hat 2 Hat1 Hat 0 Byte 3 - Hat

Bit 7 Bit 0

Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0 Byte 2 - Z axis
displacement

Bit 7 Bit 0

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Byte 1 - Y axis
displacement

Bit 7 Bit 0

X7 X6 X5 X4 X3 X2 X1 X0 Byte 0 - X axis
displacement

Endpoint_1

• Prepare data in Endpoint_1 DMA 
buffer for the next transfer.

• Re-initialize variables used by 
Endpoint_1.

• Re-enable interrupts

Return



Designing a Low-Cost USB Joystick

7

Example of configuration descriptor

Descriptor Length (9 bytes)
Descriptor Type (Configuration)
Total Data Length (34 bytes)
Interfaces Supported (1)
Configuration Value (1)
String Describing this Config (None)
Config Attributes (Bus powered)
Max Bus Power Consumption (100mA)

Interface Descriptor

The interface descriptor is 9 bytes long and describes the
interface of each device. It is possible to have more than one
interface for each device. This descriptor is set up as follows:

• Number of this interface (1 byte)

• Value used to select alternate setting for this interface (1 
byte)

• Number of endpoints used by this interface. If this number 
is zero, only endpoint 0 is used by this interface (1 byte)

• Class code (1 byte)

• Subclass code (1 byte)

• Protocol code (1 byte)

• Index of string describing this interface (1 byte)

Example of interface descriptor

Descriptor Length (9 bytes)
Descriptor Type (Interface)
Interface Number (0)
Alternate Setting (0)
Number of Endpoints (1)
Class Code (insert code)
Subclass Code (0)
Protocol (No specific protocol)
String Describing Interface (None)

Endpoint Descriptor

The endpoint descriptor describes each endpoint, including
the attributes and the address of each endpoint. It is possible
to have more than one endpoint for each interface. This de-
scriptor is 7 bytes long and is set up as follows:

• Endpoint address (1 byte)

• Endpoint attributes. Describes transfer type (1 byte)

• Maximum packet size this endpoint is capable of transfer-
ring (2 bytes)

• Time interval at which this endpoint will be polled for data 
(1 byte)

Example of endpoint descriptor

Descriptor Length (7 bytes)
Descriptor Type (Endpoint)
Endpoint Address (IN, Endpoint 1)
Attributes (Interrupt)
Maximum Packet Size (6 bytes)
Polling Interval (10 ms)

HID (Class) Descriptor

The class descriptor tells the host about the class of the de-
vice. In this case, the device falls in the human interface de-
vice (HID) class. This descriptor is 9 bytes in length and is set
up as follows:

• Class release number in BCD (2 bytes)

• Localized country code (1 byte)

• Number of HID class descriptor to follow (1 byte)

• Report descriptor type (1 byte)

• Total length of report descriptor in bytes (2 bytes)

Example of HID class descriptor

Descriptor Length (9 bytes)
Descriptor Type (HID Class)
HID Class Release Number (1.00)
Localized Country Code (USA)
Number of Descriptors (1)
Report Descriptor Type (HID)
Report Descriptor Length (63 bytes)

Report Descriptor

This is the most complicated descriptor in USB. There is no
set structure. It is more like a computer language that de-
scribes the format of the device’s data in detail. This descrip-
tor is used to define the structure of the data returned to the
host as well as to tell the host what to do with that data. An
example of a report descriptor can be found below.

A report descriptor must contain the following items: Input (or
Output or Feature), Usage, Usage Page, Logical Minimum,
Logical Maximum, Report size, and Report Count. These are
all necessary to describe the device’s data. 

Example of report descriptor

Usage Page (Generic Desktop)
Usage (Joystick)
Collection (Application)

Usage (Pointer)
Collection (Physical)

Usage Page(Generic Desktop)
Usage (X)
Usage (Y)
Logical Minimum (-127)
Logical Maximum (127)
Physical Minimum (0)
Physical Maximum (255)
Report Size (8)
Report Count (2)
Input (Data, Variable,
 Absolute)

Usage (Rotation about 
z-axis)
Logical Minimum (-64)
Logical Maximum (63)
Physical Minimum (0)
Physical Maximum (255)
Report Size (8)
Report Count (1)
Input (Data, Variable,
 Absolute)

Usage (Hat switch)
Logical Minimum (1)
Logical Maximum (8)
Physical Minimum (0)
Physical Maximum (315)
Unit (Degrees)



Designing a Low-Cost USB Joystick

8

Report Size (8)
Report Count (1)
Input (Data, Variable,
 Absolute)

Usage (buttons)
Usage Minimum (1)
Usage Maximum (4)
Logical Minimum (0)
Logical Maximum (1)
Report Size (1)
Report Count (4)
Input (Data, Variable,
 Absolute)

Report Size (1)
Report Count (4)
Input (4 bit padding)

End Collection

Usage Page(Generic Desktop)
Usage (Slider)
Logical Minimum (0)
Logical Maximum (255)
Physical Minimum (0)
Physical Maximum (255)
Report Size (8)
Report Count (1)
Input (Data, Variable,
 Absolute)

End Collection

Input items are used to tell the host what type of data will be
returned as input to the host for interpretation. These items
describe attributes such as data vs. constant, variable vs. ar-
ray, absolute vs. relative, etc.

Usages are the part of the descriptor that defines what should
be done with the data that is returned to the host. From the
example descriptor, Usage (X) tells the host that the data is
to be used as an X axis input. There is also another kind of
Usage tag found in the example called a Usage Page. The
reason for the Usage Page is that it is necessary to allow for
more than 256 possible Usage tags. Usage Page tags are
used as a second byte which allows for up to 65536 Usages.
Note that Usage (Slider) refers to the joystick throttle. Usage
(Rotation about z-axis) is implemented in the firmware, but is
not depicted in Figure 2.

Logical Minimum and Logical Maximum are used to bound
the values that a device will return. For example, a joystick
that will return the values 0 to 255 for the x-axis input will have
a Logical Minimum (0) and Logical Maximum (255). These
are different from Physical Minimum and Physical Maximum.
Physical boundaries give some meaning to the Logical
boundaries. For example, a thermometer may have Logical
boundaries of 0 to 999, but the Physical boundaries may be
32 to 212. In other words, the boundaries on the thermometer
are 32 to 212 degrees Fahrenheit, but there are one thousand
steps defined between the boundaries.

Report Size and Report Count define the structures that the
data will be transferred in. Report Size gives the size of the
structure in bits. Report Count defines how many structures
will be used. In the example descriptor above, the lines Re-
port Size (8) and Report Count (2) define two axes of the

joystick. There are now two eight-bit fields defined, one for the
X axis and one for the Y axis.

Collection items are used to show a relationship between two
or more sets of data. For example, a minimal joystick can be
described as a collection of four data items (X axis, Y axis,
and two buttons). End Collection items simply close the col-
lection.

It is important to note that all examples given here are merely
for clarification. They are not necessarily definitive solutions.

A more detailed description of all items discussed here as
well as other descriptor issues can be found in the “Device
Class Definition for Human Interface Devices (HID)” revision
1.0d and in the “Universal Serial Bus Specification” revision
1.0, chapter 9. Both of these documents can be found on the
USB world wide web site at http://www.usb.org/.

Calibration

Calibration of the joystick is performed by the host.

Functionality

The main infinite loop implemented in the firmware is a con-
tinuous polling scheme of the joystick fire and hat buttons.
(See Figure 10). This loop is entered immediately following

calibration of the joystick. First, all bits of Port 0 are polled in
order to determine if any of the buttons have been pressed.
The movement of the stick (and throttle if the joystick has this
feature) is implemented using the GPIO interrupts and the
displacement calculation described below is performed. The
One_msec interrupt subroutine is used to discharge the ca-
pacitors and save the start count (See Figure 12). When the
Port 1 bit for the axis being read transitions from LOW to HIGH
a GPIO interrupt occurs and the end count is saved (See
Figure 11). 

Displacement Calculation

The measurement algorithm will look like this:

For each axis defined...

1. Write a zero to Port 1 to discharge the 1800 pF timing 
capacitors.

Figure 10. Main Loop

Main loop

• Read Port 0

• Save button values



Designing a Low-Cost USB Joystick

© Cypress Semiconductor Corporation, 1997. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

2. Read and save the free running timer value as the start 
count.

3. When the Port 1 bit for the axis being read transitions from 
LOW to HIGH a GPIO interrupt occurs.

4. Read and save the free running timer value as the end 
count for that measurement (X or Y).

5. Subtract the start count from the end count. 

6. Subtract new joystick position from previous joystick posi-
tion (or vice versa depending on which position value is 
larger). If value less than 4h save previous position in end-
point 1 FIFO otherwise save new position in endpoint 1 
FIFO. This is done to reduce joystick jitter.

7. The value in the endpoint 1 FIFO will be sent to the host 
on the next data transfer.

The host will then compare this value to a reference value that
was found during calibration. From this, the host is able to
determine how much and in which direction the joystick has
moved and can act accordingly

Conclusion
The two main enabling factors of the proliferation of the USB
devices are cost and functionality. The CY7C63000 meets
both requirements by integrating the USB SIE and multi-func-
tion I/Os with a USB optimized RISC core.

References
[1] Second edition of “The Indispensable PC Hardware Book”

Figure 11. GPIO Interrupt Subroutine

• Read end count

• Calculate difference be-
tween end count and start 
count

• precision modification for 
jitter

• save value in endpoint 1 
FIFO

• Clear caps

GPIO 

Return 

• Clear Watchdog timer

• Suspend subroutine

• Clear caps

• Save start count

One_msec 

Return 

Figure 12. One_msec Interrupt Subroutine


